Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS Biol ; 21(11): e3002389, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37983289

RESUMEN

The meningeal space is a critical brain structure providing immunosurveillance for the central nervous system (CNS), but the impact of infections on the meningeal immune landscape is far from being fully understood. The extracellular protozoan parasite Trypanosoma brucei, which causes human African trypanosomiasis (HAT) or sleeping sickness, accumulates in the meningeal spaces, ultimately inducing severe meningitis and resulting in death if left untreated. Thus, sleeping sickness represents an attractive model to study immunological dynamics in the meninges during infection. Here, by combining single-cell transcriptomics and mass cytometry by time-of-flight (CyTOF) with in vivo interventions, we found that chronic T. brucei infection triggers the development of ectopic lymphoid aggregates (ELAs) in the murine meninges. These infection-induced ELAs were defined by the presence of ER-TR7+ fibroblastic reticular cells, CD21/35+ follicular dendritic cells (FDCs), CXCR5+ PD1+ T follicular helper-like phenotype, GL7+ CD95+ GC-like B cells, and plasmablasts/plasma cells. Furthermore, the B cells found in the infected meninges produced high-affinity autoantibodies able to recognise mouse brain antigens, in a process dependent on LTß signalling. A mid-throughput screening identified several host factors recognised by these autoantibodies, including myelin basic protein (MBP), coinciding with cortical demyelination and brain pathology. In humans, we identified the presence of autoreactive IgG antibodies in the cerebrospinal fluid (CSF) of second stage HAT patients that recognised human brain lysates and MBP, consistent with our findings in experimental infections. Lastly, we found that the pathological B cell responses we observed in the meninges required the presence of T. brucei in the CNS, as suramin treatment before the onset of the CNS stage prevented the accumulation of GL7+ CD95+ GC-like B cells and brain-specific autoantibody deposition. Taken together, our data provide evidence that the meningeal immune response during chronic T. brucei infection results in the acquisition of lymphoid tissue-like properties, broadening our understanding of meningeal immunity in the context of chronic infections. These findings have wider implications for understanding the mechanisms underlying the formation ELAs during chronic inflammation resulting in autoimmunity in mice and humans, as observed in other autoimmune neurodegenerative disorders, including neuropsychiatric lupus and multiple sclerosis.


Asunto(s)
Trypanosoma brucei brucei , Tripanosomiasis Africana , Humanos , Animales , Ratones , Infección Persistente , Meninges/metabolismo , Tejido Linfoide/metabolismo , Autoanticuerpos
2.
Essays Biochem ; 67(6): 967-977, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37386922

RESUMEN

Immune checkpoint immunotherapies act to block inhibitory receptors on the surface of T cells and other cells of the immune system. This can increase activation of immune cells and promote tumour clearance. Whilst this is very effective in some types of cancer, significant proportions of patients do not respond to single-agent immunotherapy. To improve patient outcomes, we must first mechanistically understand what drives therapy resistance. Many studies have utilised genetic, transcriptional, and histological signatures to find correlates of effective responses to treatment. It is key that we understand pretreatment predictors of response, but also to understand how the immune system becomes treatment resistant during therapy. Here, we review our understanding of the T-cell signatures that are critical for response, how these immune signatures change during treatment, and how this information can be used to rationally design therapeutic strategies. We highlight how chronic antigen recognition drives heterogeneous T-cell exhaustion and the role of T-cell receptor (TCR) signal strength in exhausted T-cell differentiation and molecular response to therapy. We explore how dynamic changes in negative feedback pathways can promote resistance to single-agent therapy. We speculate that this resistance may be circumvented in the future through identifying the most effective combinations of immunotherapies to promote sustained and durable antitumour responses.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico
3.
Cell Rep Med ; 4(4): 100989, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37001529

RESUMEN

A comprehensive study by van der Sluis et al.1 demonstrates immunotherapeutic targeting of OX40 and PD-L1 results in enhanced tumor clearance, which is linked to the dynamic emergence of distinct subsets of CD8+ T cells.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Linfocitos T CD8-positivos/patología , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Neoplasias/terapia , Neoplasias/patología , Biomarcadores
4.
Curr Opin Immunol ; 81: 102285, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36764055

RESUMEN

Nr4a1-3 encode a small family of orphan nuclear hormone receptors with transcriptional activity. Their expression reflects both acute and chronic antigen-receptor signaling in T and B-cells, and they have been implicated in critical aspects of lymphocyte development, tolerance, and function. These include roles in regulatory T-cell (Treg), thymic-negative selection, humoral responses, anergy, and exhaustion. Here, we review recent advances in this field such as functional roles in B-cells, transcriptional targets, and mechanism of action. We highlight recurrent themes, including integration of antigen-receptor signaling with costimulatory input, as well as unanswered questions and translational applications of this work.


Asunto(s)
Transducción de Señal , Linfocitos T Reguladores , Humanos , Tolerancia Inmunológica , Receptores de Antígenos
5.
Cell Rep ; 40(7): 111193, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977513

RESUMEN

Succinate dehydrogenase (SDH) loss-of-function mutations drive succinate accumulation in tumor microenvironments, for example in the neuroendocrine tumors pheochromocytoma (PC) and paraganglioma (PG). Control of innate immune cell activity by succinate is described, but effects on T cells have not been interrogated. Here we report that exposure of human CD4+ and CD8+ T cells to tumor-associated succinate concentrations suppresses degranulation and cytokine secretion, including of the key anti-tumor cytokine interferon-γ (IFN-γ). Mechanistically, this is associated with succinate uptake-partly via the monocarboxylate transporter 1 (MCT1)-inhibition of succinyl coenzyme A synthetase activity and impaired glucose flux through the tricarboxylic acid cycle. Consistently, pharmacological and genetic interventions restoring glucose oxidation rescue T cell function. Tumor RNA-sequencing data from patients with PC and PG reveal profound suppression of IFN-γ-induced genes in SDH-deficient tumors compared with those with other mutations, supporting a role for succinate in modulating the anti-tumor immune response in vivo.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Paraganglioma , Feocromocitoma , Neoplasias de las Glándulas Suprarrenales/genética , Linfocitos T CD8-positivos , Citocinas , Glucosa , Humanos , Paraganglioma/genética , Feocromocitoma/genética , Succinatos , Ácido Succínico , Microambiente Tumoral
7.
J Exp Med ; 219(7)2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35699942

RESUMEN

Interleukin 2 (IL-2) is a key homeostatic cytokine, with therapeutic applications in both immunogenic and tolerogenic immune modulation. Clinical use has been hampered by pleiotropic functionality and widespread receptor expression, with unexpected adverse events. Here, we developed a novel mouse strain to divert IL-2 production, allowing identification of contextual outcomes. Network analysis identified priority access for Tregs and a competitive fitness cost of IL-2 production among both Tregs and conventional CD4 T cells. CD8 T and NK cells, by contrast, exhibited a preference for autocrine IL-2 production. IL-2 sourced from dendritic cells amplified Tregs, whereas IL-2 produced by B cells induced two context-dependent circuits: dramatic expansion of CD8+ Tregs and ILC2 cells, the latter driving a downstream, IL-5-mediated, eosinophilic circuit. The source-specific effects demonstrate the contextual influence of IL-2 function and potentially explain adverse effects observed during clinical trials. Targeted IL-2 production therefore has the potential to amplify or quench particular circuits in the IL-2 network, based on clinical desirability.


Asunto(s)
Interleucina-2 , Células Asesinas Naturales , Linfocitos T Reguladores , Animales , Inmunidad Innata , Interleucina-2/biosíntesis , Interleucina-2/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Ratones , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
8.
Cell Host Microbe ; 30(7): 1020-1033.e6, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35568028

RESUMEN

Antibiotics are a modifiable iatrogenic risk factor for the most common human nosocomial fungal infection, invasive candidiasis, yet the underlying mechanisms remain elusive. We found that antibiotics enhanced the susceptibility to murine invasive candidiasis due to impaired lymphocyte-dependent IL-17A- and GM-CSF-mediated antifungal immunity within the gut. This led to non-inflammatory bacterial escape and systemic bacterial co-infection, which could be ameliorated by IL-17A or GM-CSF immunotherapy. Vancomycin alone similarly enhanced the susceptibility to invasive fungal infection and systemic bacterial co-infection. Mechanistically, vancomycin reduced the frequency of gut Th17 cells associated with impaired proliferation and RORγt expression. Vancomycin's effects on Th17 cells were indirect, manifesting only in vivo in the presence of dysbiosis. In humans, antibiotics were associated with an increased risk of invasive candidiasis and death after invasive candidiasis. Our work highlights the importance of antibiotic stewardship in protecting vulnerable patients from life-threatening infections and provides mechanistic insights into a controllable iatrogenic risk factor for invasive candidiasis.


Asunto(s)
Antibacterianos , Candidiasis Invasiva , Coinfección , Animales , Antibacterianos/administración & dosificación , Antibacterianos/efectos adversos , Bacterias/efectos de los fármacos , Bacterias/inmunología , Candida albicans/inmunología , Candidiasis Invasiva/inmunología , Candidiasis Invasiva/microbiología , Coinfección/inmunología , Coinfección/microbiología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Humanos , Enfermedad Iatrogénica , Inmunoterapia , Interleucina-17/inmunología , Interleucina-17/uso terapéutico , Ratones , Células Th17/metabolismo , Vancomicina/farmacología
9.
STAR Protoc ; 3(1): 101161, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35169717

RESUMEN

This protocol uses the Tg4 Nr4a3-Tocky mouse model to recalibrate T cell activation thresholds and reveals the role that immune checkpoints play in controlling T cell activation. The example approach here uses flow cytometry to characterize quantitative and qualitative changes in splenic CD4+ T cells reactivated in the presence of anti-PD1 immunotherapy. The protocol is optimized for studying anti-PD1 pathway blockade only. The protocol is not compatible with cellular fixation, and T cells should be analyzed immediately after staining. For complete details on the use and execution of this protocol, please refer to Elliot et al. (2021).


Asunto(s)
Linfocitos T CD4-Positivos , Inmunoterapia , Animales , Modelos Animales de Enfermedad , Citometría de Flujo , Inmunoterapia/efectos adversos , Activación de Linfocitos , Ratones , Ratones Transgénicos
10.
Discov Immunol ; 1(1): kyac009, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36704407

RESUMEN

In lymphocytes, Nr4a gene expression is specifically regulated by antigen receptor signalling, making them ideal targets for use as distal T cell receptor (TCR) reporters. Nr4a3-Timer of cell kinetics and activity (Tocky) mice are a ground-breaking tool to report TCR-driven Nr4a3 expression using Fluorescent Timer protein (FT). FT undergoes a time-dependent shift in its emission spectrum following translation, allowing for the temporal reporting of transcriptional events. Our recent work suggested that Nr4a1/Nur77 may be a more sensitive gene to distal TCR signals compared to Nr4a3, so we, therefore, generated Nur77-Timer-rapidly-expressed-in-lymphocytes (Tempo) mice that express FT under the regulation of Nur77. We validated the ability of Nur77-Tempo mice to report TCR and B cell receptor signals and investigated the signals regulating Nur77-FT expression. We found that Nur77-FT was sensitive to low-strength TCR signals, and its brightness was graded in response to TCR signal strength. Nur77-FT detected positive selection signals in the thymus, and analysis of FT expression revealed that positive selection signals are often persistent in nature, with most thymic Treg expressing FT Blue. We found that active TCR signals in the spleen are low frequency, but CD69+ lymphoid T cells are enriched for FT Blue+ Red+ T cells, suggesting frequent TCR signalling. In non-lymphoid tissue, we saw a dissociation of FT protein from CD69 expression, indicating that tissue residency is not associated with tonic TCR signals. Nur77-Tempo mice, therefore, combine the temporal dynamics from the Tocky innovation with increased sensitivity of Nr4a1 to lower TCR signal strengths.

11.
Immunity ; 54(11): 2481-2496.e6, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34534438

RESUMEN

How T cell receptor (TCR) signal strength modulates T cell function and to what extent this is modified by immune checkpoint blockade (ICB) are key questions in immunology. Using Nr4a3-Tocky mice, we characterized early quantitative and qualitative changes that occur in CD4+ T cells in relation to TCR signaling strength. We captured how dose- and time-dependent programming of distinct co-inhibitory receptors rapidly recalibrates T cell activation thresholds and visualized the immediate effects of ICB on T cell re-activation. Our findings reveal that anti-PD1 immunotherapy leads to an increased TCR signal strength. We defined a strong TCR signal metric of five genes upregulated by anti-PD1 in T cells (TCR.strong), which was superior to a canonical T cell activation gene signature in stratifying melanoma patient outcomes to anti-PD1 therapy. Our study therefore reveals how analysis of TCR signal strength-and its manipulation-can provide powerful metrics for monitoring outcomes to immunotherapy.


Asunto(s)
Antígenos/inmunología , Proteínas de Punto de Control Inmunitario/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Regulación de la Expresión Génica , Inhibidores de Puntos de Control Inmunológico/farmacología , Proteínas de Punto de Control Inmunitario/genética , Activación de Linfocitos , Melanoma/tratamiento farmacológico , Melanoma/etiología , Melanoma/metabolismo , Melanoma/patología , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Unión Proteica , Linfocitos T/efectos de los fármacos
12.
STAR Protoc ; 2(1): 100284, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33532733

RESUMEN

This protocol uses Nr4a1-GFP Nr4a3-Tocky mice to study T cell receptor (TCR) signaling using flow cytometry. It identifies the optimal mouse transgenic status and fluorochromes compatible with the dual reporter. This protocol has applications in TCR signaling, and we outline how to obtain high-quality datasets. It is not compatible with cellular fixation, and cells should be analyzed immediately after staining. For complete details on the use and execution of this protocol, please refer to Jennings et al., 2020.


Asunto(s)
Citometría de Flujo , Proteínas Fluorescentes Verdes/inmunología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/inmunología , Proteínas Recombinantes de Fusión/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología , Animales , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Transgénicos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Proteínas Recombinantes de Fusión/genética
13.
Cell Rep ; 33(5): 108328, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33147449

RESUMEN

Nr4a receptors are activated by T cell receptor (TCR) signaling and play key roles in T cell differentiation. Which TCR signaling pathways regulate Nr4a receptors and their sensitivities to TCR signal strength and duration remains unclear. Using Nr4a1/Nur77-GFP and Nr4a3-Timer of cell kinetics and activity (Tocky) mice, we elucidate the signaling pathways governing Nr4a receptor expression. We reveal that Nr4a1-Nr4a3 are Src family kinase dependent. Moreover, Nr4a2 and Nr4a3 are attenuated by calcineurin inhibitors and bind nuclear factor of activated T cells 1 (NFAT1), highlighting a necessary and sufficient role for NFAT1 in the control of Nr4a2 and Nr4a3, but redundancy for Nr4a1. Nr4a1-GFP is activated by tonic and cognate signals during T cell development, whereas Nr4a3-Tocky requires cognate peptide:major histocompatibility complex (MHC) interactions for expression. Compared to Nr4a3-Tocky, Nr4a1-GFP is approximately 2- to 3-fold more sensitive to TCR signaling and is detectable by shorter periods of TCR signaling. These findings suggest that TCR signal duration may be an underappreciated aspect influencing the developmental fate of T cells in vivo.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Genes Reporteros , Proteínas del Tejido Nervioso/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Esteroides/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Transducción de Señal , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Calcineurina/metabolismo , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Transcripción NFATC/metabolismo , Péptidos/metabolismo
14.
Arthritis Rheumatol ; 71(3): 460-467, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30350355

RESUMEN

OBJECTIVE: Evidence suggests that aberrant function of innate lymphoid cells (ILCs), whose functional and transcriptional profiles overlap with those of Th cell subsets, contributes to immune-mediated pathologies. To date, analysis of juvenile idiopathic arthritis (JIA) immune pathology has concentrated on the contribution of CD4+ T cells; we have previously identified an expansion of Th17 cells within the synovial fluid (SF) of JIA patients. We undertook this study to extend this analysis to further investigate the role of ILCs and other interleukin-17 (IL-17)-producing T cell subsets in JIA. METHODS: ILCs and CD3+ T cell subsets were defined in peripheral blood mononuclear cells (PBMCs) from healthy adults, healthy children, and JIA patients and in SF mononuclear cells (SFMCs) from JIA patients using flow cytometry. Defined subsets in SFMCs were correlated with clinical measures including physician's global assessment of disease activity on a visual analog scale, number of joints with active disease, and erythrocyte sedimentation rate. Transcription factor and cytokine profiles of sorted ILCs were assessed by quantitative reverse transcriptase-polymerase chain reaction. RESULTS: Group 1 ILCs (ILC1s), NKp44- group 3 ILCs (natural cytotoxicity receptor-negative [NCR-] ILC3s), and NKp44+ ILC3s (NCR+ ILC3s) were enriched in JIA SFMCs compared to PBMCs, which corresponded to an increase in transcripts for TBX21, IFNG, and IL17A. Of the ILC subsets, the frequency of NCR- ILC3s in JIA SFMCs displayed the strongest positive association with clinical measures, which was mirrored by an expansion in IL-17A+CD4+, IL-17A+CD8+, and IL-17A+ γδ T cells. CONCLUSION: We demonstrate that the strength of the IL-17A signature in JIA SFMCs is determined by multiple lymphoid cell types, including NCR- ILC3s and IL-17A+CD4+, IL-17A+CD8+, and IL-17A+ γδ T cells. These observations may have important implications for the development of stratified therapeutics.


Asunto(s)
Artritis Juvenil/inmunología , Linfocitos T CD4-Positivos/inmunología , Inmunidad Innata/inmunología , Interleucina-17/inmunología , Linfocitos/inmunología , Adolescente , Niño , Citocinas/inmunología , Femenino , Humanos , Leucocitos Mononucleares/inmunología , Masculino , Receptor 2 Gatillante de la Citotoxidad Natural/inmunología , Líquido Sinovial/inmunología , Subgrupos de Linfocitos T/inmunología
15.
Front Immunol ; 9: 2273, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30333832

RESUMEN

Since the identification of the regulatory T-cell (Treg)-associated transcription factor Foxp3, there have been intensive research efforts to understand its biology and roles in maintaining immune homeostasis. It is well established that thymic selection of a repertoire of self-reactive Foxp3+ T-cells provides an essential mechanism to minimize reactions to self-antigens in the periphery, and thus aid in the prevention of autoimmunity. It is clear from both genetic and immunological analyses of juvenile idiopathic arthritis (JIA) patients that T-cells have a strong role to play in both the initiation and propagation of disease. The current paradigm is to view autoimmunity as a consequence of an imbalance between inflammatory and immunoregulatory mechanisms. This view has led to the assigning of cells and inflammatory mediators to different classes based on their assumed pro- or anti-inflammatory roles. This is typically reported as ratios of effector T-cells to Treg cells. Problematically, many analyses are based on static "snapshots-in-time," even though both mouse models and human patient studies have highlighted the dynamic nature of Foxp3+ T-cells in vivo, which can exhibit plasticity and time-dependent functional states. In this review, we discuss the role of Foxp3 dynamics in the control of T-cell responses in childhood arthritis, by reviewing evidence in humans and relevant mouse models of inflammatory disease. Whilst the cellular dynamics of Treg have been well evaluated-leading to standard data outputs such as frequency, quantity and quality (often assessed by in vitro suppressive capacity)-we discuss how recent insights into the molecular dynamics of Foxp3 transcription and its post-translational control may open up tantalizing new avenues for immunotherapies to treat autoimmune arthritis.


Asunto(s)
Artritis Juvenil/inmunología , Factores de Transcripción Forkhead/inmunología , Linfocitos T Reguladores/inmunología , Transcripción Genética/inmunología , Animales , Artritis Juvenil/patología , Artritis Juvenil/terapia , Humanos , Linfocitos T Reguladores/patología
16.
EMBO J ; 37(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29991564

RESUMEN

Regulatory T cells (Treg) are negative regulators of the immune response; however, it is poorly understood whether and how Foxp3 transcription is induced and regulated in the periphery during T-cell responses. Using Foxp3-Timer of cell kinetics and activity (Tocky) mice, which report real-time Foxp3 expression, we show that the flux of new Foxp3 expressors and the rate of Foxp3 transcription are increased during inflammation. These persistent dynamics of Foxp3 transcription determine the effector Treg programme and are dependent on a Foxp3 autoregulatory transcriptional circuit. Persistent Foxp3 transcriptional activity controls the expression of coinhibitory molecules, including CTLA-4 and effector Treg signature genes. Using RNA-seq, we identify two groups of surface proteins based on their relationship to the temporal dynamics of Foxp3 transcription, and we show proof of principle for the manipulation of Foxp3 dynamics by immunotherapy: new Foxp3 flux is promoted by anti-TNFRII antibody, and high-frequency Foxp3 expressors are targeted by anti-OX40 antibody. Collectively, our study dissects time-dependent mechanisms behind Foxp3-driven T-cell regulation and establishes the Foxp3-Tocky system as a tool to investigate the mechanisms behind T-cell immunotherapies.


Asunto(s)
Factores de Transcripción Forkhead/inmunología , Linfocitos T Reguladores/inmunología , Transcripción Genética/inmunología , Animales , Anticuerpos/farmacología , Antígeno CTLA-4/genética , Antígeno CTLA-4/inmunología , Factores de Transcripción Forkhead/genética , Ratones , Ratones Transgénicos , Receptores OX40/antagonistas & inhibidores , Receptores OX40/genética , Receptores OX40/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/antagonistas & inhibidores , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Linfocitos T Reguladores/citología , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética
17.
J Cell Biol ; 217(8): 2931-2950, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-29941474

RESUMEN

Understanding the mechanisms of cellular differentiation is challenging because differentiation is initiated by signaling pathways that drive temporally dynamic processes, which are difficult to analyze in vivo. We establish a new tool, Timer of cell kinetics and activity (Tocky; or toki [time in Japanese]). Tocky uses the fluorescent Timer protein, which spontaneously shifts its emission spectrum from blue to red, in combination with computer algorithms to reveal the dynamics of differentiation in vivo. Using a transcriptional target of T cell receptor (TCR) signaling, we establish Nr4a3-Tocky to follow downstream effects of TCR signaling. Nr4a3-Tocky reveals the temporal sequence of events during regulatory T cell (Treg) differentiation and shows that persistent TCR signals occur during Treg generation. Remarkably, antigen-specific T cells at the site of autoimmune inflammation also show persistent TCR signaling. In addition, by generating Foxp3-Tocky, we reveal the in vivo dynamics of demethylation of the Foxp3 gene. Thus, Tocky is a tool for cell biologists to address previously inaccessible questions by directly revealing dynamic processes in vivo.


Asunto(s)
Diferenciación Celular/genética , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica/métodos , Algoritmos , Animales , Desmetilación , Factores de Transcripción Forkhead/metabolismo , Cinética , Proteínas Luminiscentes/análisis , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal , Factores de Tiempo
18.
Nat Immunol ; 18(11): 1181-1183, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-29044246
20.
J Immunol ; 195(12): 5616-24, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26561546

RESUMEN

Although there is great interest in harnessing the immunosuppressive potential of FOXP3(+) regulatory T cells (Tregs) for treating autoimmunity, a sizeable knowledge gap exists regarding Treg fate in human disease. In juvenile idiopathic arthritis (JIA) patients, we have previously reported that atypical CD25(+)FOXP3(-) Treg-like cells uniquely populate the inflamed site. Intriguingly, their proportions relative to CD25(+)FOXP3(+) Tregs associate with arthritis course, suggesting a role in disease. The ontogeny of these FOXP3(-) Treg-like cells is, however, unknown. In this study, we interrogated clonal relationships between CD4(+) T cell subsets in JIA, using high-throughput TCR repertoire analysis. We reveal that FOXP3(+) Tregs possess highly exclusive TCRß usage from conventional T cells, in blood, and also at the inflamed site, where they are clonally expanded. Intriguingly, the repertoires of FOXP3(+) Tregs in synovial fluid are highly overlapping with CD25(+)FOXP3(-) Treg-like cells, indicating fluctuations in FOXP3 expression in the inflamed joint. Furthermore, cultured synovial Tregs rapidly downregulated FOXP3 protein (but not mRNA), and this process was prevented by addition of synovial fluid from JIA patients, through an IL-6-independent mechanism. Our findings suggest that most Tregs arise from a separate lineage from conventional T cells, and that this repertoire divergence is largely maintained under chronic inflammatory conditions. We propose that subsequent Treg expansions at the inflamed site creates an environment that leads to competition for limited resources within the synovium, resulting in the destabilization of FOXP3 expression in some Tregs.


Asunto(s)
Artritis Juvenil/inmunología , Factores de Transcripción Forkhead/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Líquido Sinovial/metabolismo , Membrana Sinovial/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Microambiente Celular , Células Clonales , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Humanos , Interleucina-6/inmunología , Receptores de Antígenos de Linfocitos T/genética , Líquido Sinovial/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...